

Chapter 16B:

Metabolism of Aliphatic Amino Acids (Glu, Asp, Lys, Arg, NO, Val, Leu, Ile)

Textbook of BIOCHEMISTRY for Medical Students

By DM Vasudevan, et al.

TENTH EDITION

Acidic Amino Acids

- The acidic amino acids are glutamic acid and aspartic acid.
- Glutamine and asparagine are the corresponding amides formed by addition of ammonia to the extra carboxyl group to form an amide.
- All the four amino acids are used for protein synthesis and serve important metabolic functions.

GLUTAMIC ACID (GLU) (E)

TANK AND

+

1. Transamination reactions: Most amino acids transfer their amino group to alpha keto glutaric acid to form glutamic acid.

aminotransferase

Amino acid + Alpha keto glutarate \rightarrow

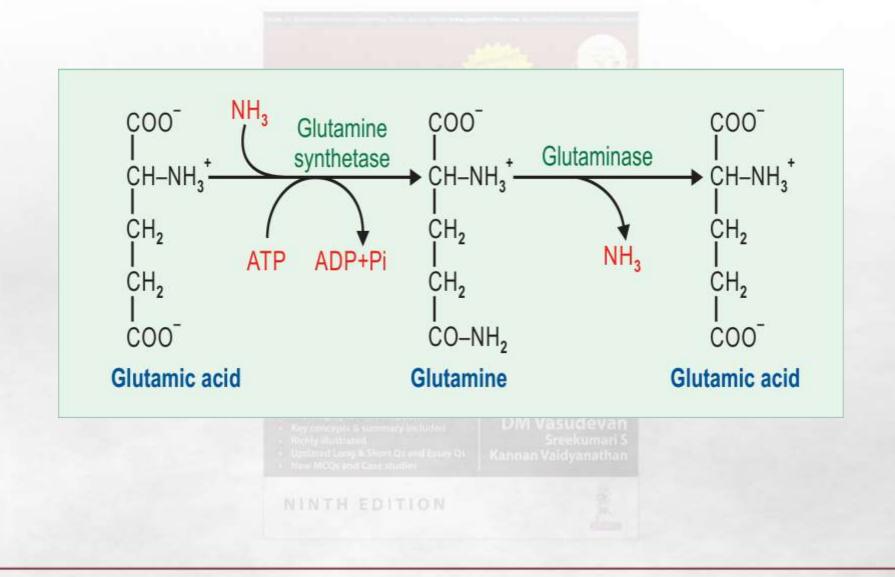
Alpha keto acid Glutamic acid

Highlights

Thereaughly revolves in updated Key Concepts is summary included Richly illicitiated. Updated Long & Short Os and Essay

New MCQs and Case studies

DM Vasudevan Sreekumari S Annan Vaidyanathan


- 2. Glutamic acid is also formed during the metabolism of histidine, proline and arginine.
- **3.** Oxidative deamination: Glutamic acid is deaminated to form alpha keto glutarate by the enzyme glutamate dehydrogenase with the help of NAD+.

Glutamic acid - \rightarrow Alpha ketoglutarate + NH3

4. Glucogenic: Glutamic acid enters the TCA cycle as α ketoglutarate, gets converted to oxaloacetate and enters the **glucogenic** pathway.

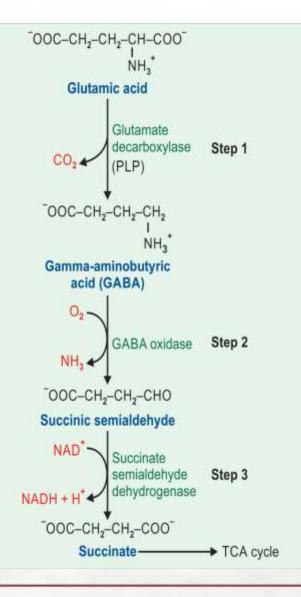
5. N-acetyl glutamate (NAG) is a positive modifier of carbamoyl phosphate synthetase-I in the mitochondria.
 Glutamic acid + Acetyl-CoA

 \rightarrow NAG + CoASH

- 6. Gamma carboxy glutamic acid (GCGA) is present in prothrombin.
- The gamma carboxyl group is added as a post-translational modification, which needs vitamin K

- 8. Excitatory neurotransmitter. Neurons contain NMDA (N-methyl-D-aspartate) receptor.
- Stimulation of NMDA receptors by glutamate opens calcium channel, leading to stimulation of NOS (nitric oxide synthase).
- This in turn, results in transient production of NO• (nitric oxide).
- This raises the cellular level of cyclic GMP and neurons are excited.
- **9. Glutathione:** Glutamate is a constituent of the tripeptide glutathione.
- 10. Glutamic acid is decarboxylated to GABA.

Gamma-Amino Butyric Acid (GABA)


- Metabolism: Glutamic acid on decarboxylation gives rise to gamma-amino butyric acid (GABA).
- Part of the glutamate in the brain can be shunted through the GABA pathway and catabolized to succinate.
- GABA is an inhibitory neurotransmitter because it opens the chloride channels in post-synaptic membranes in CNS.

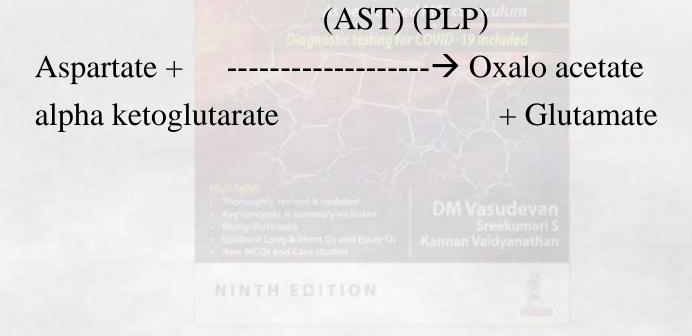
- **Pyridoxal phosphate:** Both the formation and catabolism of GABA requires pyridoxal phosphate as coenzyme.
- Therefore, in pyridoxine deficiency, GABA formation is reduced.
- Since GABA is an inhibitory transmitter, a low level of GABA or deficiency of pyridoxal phosphate would lead to **convulsions**.
- Sodium valproate which inhibits GABA oxidase is used in the treatment of epilepsy.
- Congenital **deficiencies** of GABA amino transferase and succinic semialdehyde dehydrogenase (leading to hydroxy butyric aciduria) are reported, but are very rare.

A REAL

GLUTAMINE (GLN) (Q)

TANKE AND

- It is a **glucogenic** amino acid.
- It is synthesized from glutamic acid.
- The amidation of glutamic acid to glutamine is catalyzed by glutamine synthetase.
- Glutamic acid can react with a molecule of NH3 in presence of ATP.
- This reaction is important in ammonia trapping in brain as well as for transport of ammonia in a nontoxic form.
- Glutamine is hydrolyzed to glutamate and NH3 by the enzyme glutaminase.
- This reaction is seen in the renal tubular cells.
- This **ammonia reacts with H**+ to form NH4+ to excrete hydrogen ions in urine.

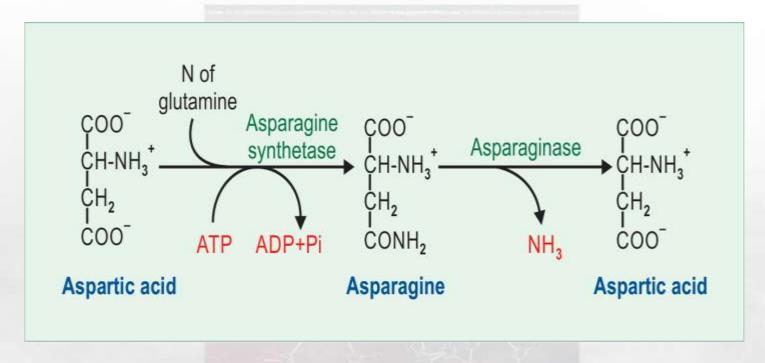


- Major fate of glutamine is to be hydrolyzed to glutamate and NH3.
- Glutamic acid is then deaminated to alpha ketoglutarate and enters TCA cycle for further catabolism.
- The N atoms 3 and 9 of purines are derived from glutamine.
- Glutamine is the source of **3rd N of pyrimidine**.
- Glutamine is the source of NH2 group of guanine and cytosine.
- Glutamine is a **conjugating agent**, e.g. production of phenyl acetyl glutamine.
- Glutamine donates the amino group of amino sugars and amide group of nicotinamide.

ASPARTIC ACID (ASP) (D)

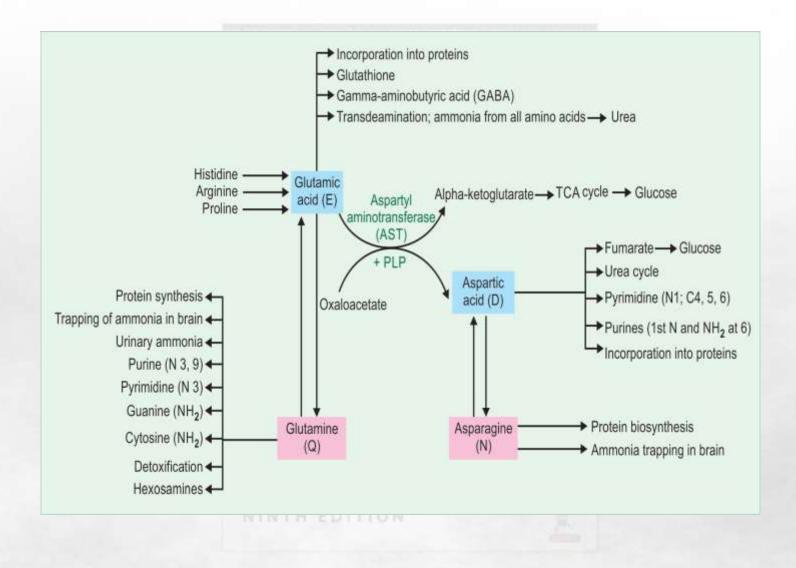
- It is a non-essential, glucogenic amino acid.
- Aspartate, on transamination gives rise to oxaloacetate which initiates the TCA cycle.
- Aspartate amino transferase (AST) transfers the amino group of aspartate to alpha ketoglutarate to form oxaloacetate.

- AST is increased in cardiac ischemia and in hepatic diseases.
- Malate aspartate shuttle transfers the cytoplasmic NADH into mitochondria for oxidation in the electron transport chain.
- Aspartic acid is an important member of urea cycle.
- It directly contributes its **alpha amino group** to the urea molecule.
- The carbon skeleton of aspartate can also enter the glucogenic pathway as fumarate.
- Citrulline + Aspartate \rightarrow Arginine + Fumarate


ASPARAGINE (ASN) (N)

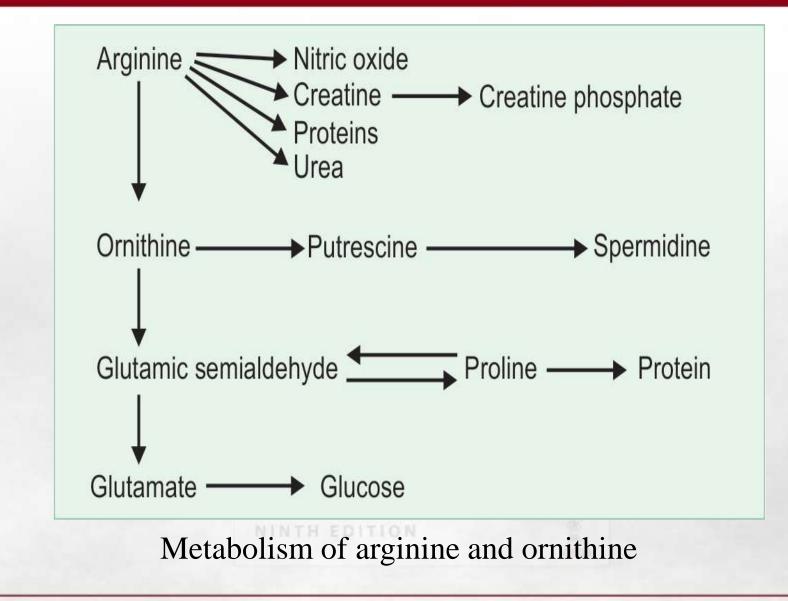
THE STREET

- Aspartate reacts with ammonia to form asparagine.
- This is a reaction similar to formation of glutamine.
- Asparagine can be hydrolyzed to aspartate and NH3 by asparaginase.
- L asparaginase is an anticancer drug against leukemias and lymphomas, because those cells cannot synthesize asparagine; the enzyme will destroy the available asparagine in the blood; so the cancer cells will die.
- Asparagine is a glucogenic amino acid.



Asparagine synthesis and breakdown.

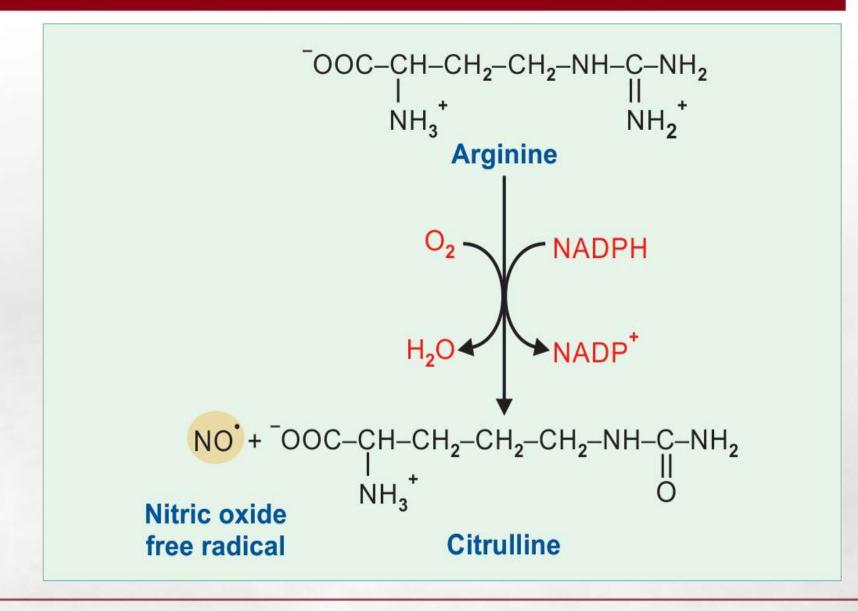
Basic Amino Acids Lysine (Lys) K)


- Lysine is an essential basic amino acid.
- It is **deficient in cereals**.
- It does not undergo transamination.
- Lysine is predominantly ketogenic.
- In the catabolic pathway, lysine is converted to saccharopine, which finally enters into the pathway of odd numbered fatty acids.
- Hyperlysinemias result from congenital deficiency of any of the enzymes of the above pathway.
- Mental retardation and cortical degeneration are seen in these conditions.

- Lysine serves the following functions:
- a. Lysine and **hydroxylysine** residues of collagen and elastin are important in crosslinking.
- b. The epsilon amino group of lysine can form Schiff bases, thus **linking to proteins**, e.g. Pyridoxal phosphate with transaminases.
- c. Lysine is the precursor of carnitine.
- d. Bacterial putrification (decarboxylation) of lysine in the intestine gives rise to **cadaverine**.

ARGININE (ARG) (R)

- Arginine contains guanidinium group.
- It is a highly basic, semi-essential amino acid.
- Arginine is glucogenic.
- In the urea cycle, where arginase splits arginine into urea and ornithine.
- Arginine is necessary for the synthesis of creatine.
- Arginine is the precursor of **nitric oxide** which is an important signal molecule in the body.


NITRIC OXIDE (NO')

- It is a toxic pollutant of air and automobile exhausts.
- But now it is shown to possess more potential biological functions than any other known molecule.
- The vasodilatory effect of nitroglycerine is due to the release of NO[•].
- "Endothelium derived relaxing factor" (EDRF) is required for arterial dilatation.
- EDRF is chemically NO[•].

Hidhlights
Thereaughly revealed & updated
Key concepts & summary socialized
Richly disstrated
Updated Long & Short Os and Esser Os
New MCOs and Case studies

- Metabolic Fate
- NO• combines with oxygen to form NO2.
- These nitrites are excreted through urine.
- On exposure to superoxide anion (O•2–), nitric oxide (NO•) is converted to a highly reactive free radical, peroxynitrite (OONO•), which causes lipid peroxidation, cell injury and cell death.

ISO-Enzymes of NOS

- There are 3 isoforms of NOS, these are products of 3 different genes.
- All forms are seen in almost all tissues.
- Neuronal NOS: NOS-1 or nNOS or neuronal NOS is seen in central and peripheral neurons.
- Nitrogenic neurons are seen especially in cerebellum and gastrointestinal tract.

Iso-enzymes of NOS Continuued

- Macrophage NOS: NOS-2 or iNOS or inducible NOS or macrophage NOS is mainly seen in macrophages and neutrophils.
- It is induced by cytokines (interleukin-1 and tumor necrosis factor).
- Endothelial NOS: NOS-3 or eNOS or endothelial NOS is seen in endothelial cells, platelets, endocardium and myocardium.
- In these sites, the NO• is constantly produced and released, so as to have arterial relaxation.

- Mechanism of Action of Nitric Oxide
- NO• diffuses to the adjacent smooth muscle and activates guanylate cyclase.
- Increased level of **cyclic GMP** activates protein kinase in smooth muscles, kinase in smooth muscles, leading to relaxation leading to relaxation of muscles.
- Thus NO• is a vasodilator.

Highlights
Thereaughly reversed & updated
Key concepts & university included
Richly illustrated
Updated Long & Sheet Os and Esser Os
New MCOs and Case studies

Physiological Actions of Nitric Oxide

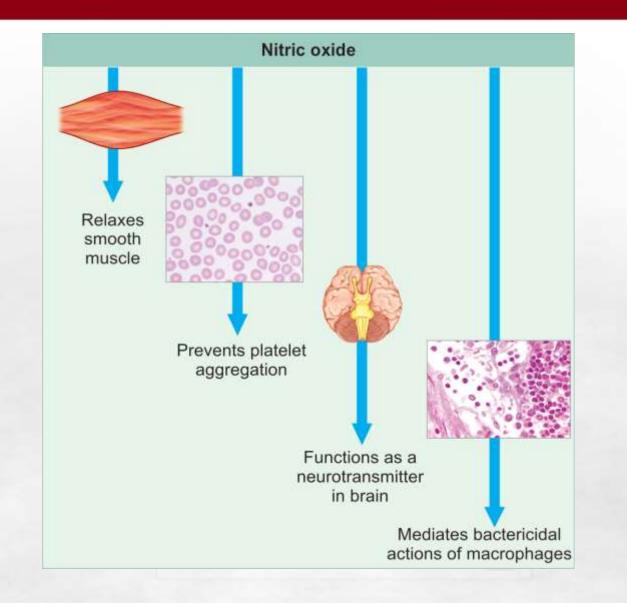
THE T

- Blood vessels: NO• is a potent vasodilator.
- The normal blood pressure is maintained by the NO• liberated by endothelial NOS (NOSe).
- NO• causes cerebral, coronary, renal and muscle arteries to dilate.
- A deficiency of NO' is associated with hypertension.
- Excessive production of NO• results in refractory hypotension, which may be seen in patients with septicemic shock.
- Central nervous system: In CNS, NOSn isoform is present.
- NO• stimulates the releasing hormones (CRH, GHRH and LHRH).

- Macrophages: Macrophages contain the isoform NOSi (i stands for inducible).
- This enzyme produces NO[•] and peroxy nitrite; which are lethal to **micro-organisms**.
- NO• production in macrophage is induced by interleukin and tumor necrosis factor.
- **Platelets:** NO• inhibits adhesion of platelets and so depresses platelet functions.
- Intestinal system: NO• is a non-adrenergic and noncholinergic (NANC) neurotransmitter, especially in gastrointestinal tract and urogenital tract.
- It relaxes smooth muscles and leads to reduced gastrointestinal motility and relaxation of sphincters.

Nitric Oxide in Diseases and Treatment

- Angina pectoris: Nitroprusside can directly release NO•.
- Nitroglycerin (glyceryl trinitrite) requires glutathione to produce NO•.
- These will dilate coronary arteries, and are beneficial in treating angina pectoris.
- **Pulmonary hypertension:** Inhalation of NO• is useful in the treatment of pulmonary hypertension and high altitude pulmonary edema.
- NO• produces pulmonary vasodilatation, without lowering systemic blood pressure


Thereaughly reveal & induced
 Key Concernits & summary incluited
 Highly illipitated
 Ucclimit Long & Sheet Os and Esser Os
 Hew MCOs and Case studies

- **Impotence:** NO• relaxes smooth muscles in the corpus cavernosum and increases blood flow into the penis and makes it erect.
- Sildenafil citrate (Viagra) selectively inhibits the specific phosphodiesterase type 5 (PDE-5); thus inhibiting hydrolysis of cGMP, and increasing the concentration of cGMP in corpus cavernosum.

POLYAMINES

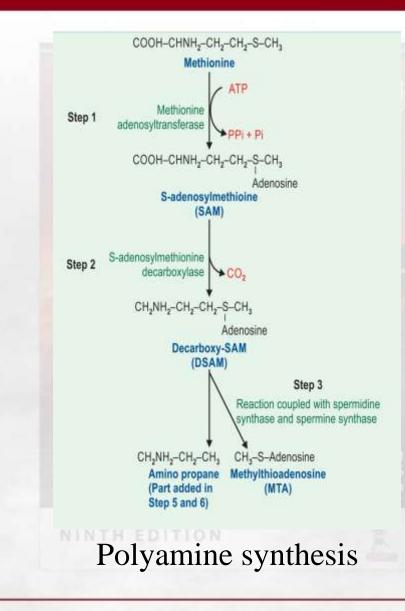
- Polyamines are putrescine, spermidine and spermine.
- They are synthesized from **Ornithine** with the help of Methionine.
- **DFMO** (difluromethyl ornithine) is a powerful inhibitor of polyamine synthesis.
- It is an example of **suicide inhibition**.
- African sleeping sickness and Indian Kala-azar are produced by parasites, trypanosomes.
- In these parasites, the half-life of ODC is many hours.

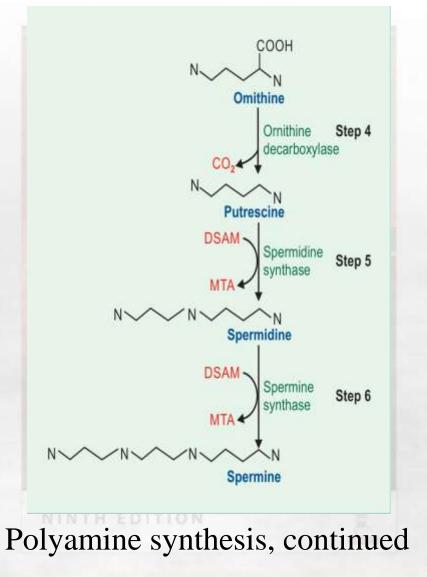
- DFMO inhibits polyamine synthesis, so parasites cannot divide, and the immune system of the host can kill them.
- The half-life of ODC in man is only 5 minutes.
- So, enzyme molecules are constantly synthesized, and hence the drug will not affect human beings.
- DFMO is also useful against pneumocystis carinii parasite infection, which is common in AIDS.

Biochemical Functions of Polyamines

- Polyamines are required for protein biosynthesis.
- Several roles are suggested for polyamines, e.g. cell proliferation, synthesis of DNA and RNA, etc.
- Polyamine concentration is increased in **cancer** tissues.
- Polyamines are growth factors in cell culture systems.

Diagnostic testing for COVID -19 included


Biogenic Amines


- They are generally synthesized by decarboxylation of amino acids.
- They are basic in nature.
- They have diverse biological functions.

and the second s

Biogenic Amines

Substrate	Decarboxylated product, amine	
Serine	Ethanol amine \rightarrow Choline	
Tyrosine	Tyramine	
DOPA	Dopamine	
Tryptophan	Tryptamine	
5-OH-tryptophan	Serotonin	
Histidine	Histamine	
Ornithine	Putrescine	
Lysine	Cadaverine	
Cysteine	Taurine	

BRANCHED CHAIN AMINO ACIDS (BCAA)

- Valine (Val) (V) is glucogenic; Leucine (Leu) (L) is ketogenic while Isoleucine (Ile) (I) is both ketogenic and glucogenic.
- All the three are essential amino acids.
- Leucine is the major ketogenic amino acid.
- These amino acids serve as an alternate source of **fuel for the brain** especially under conditions of starvation.

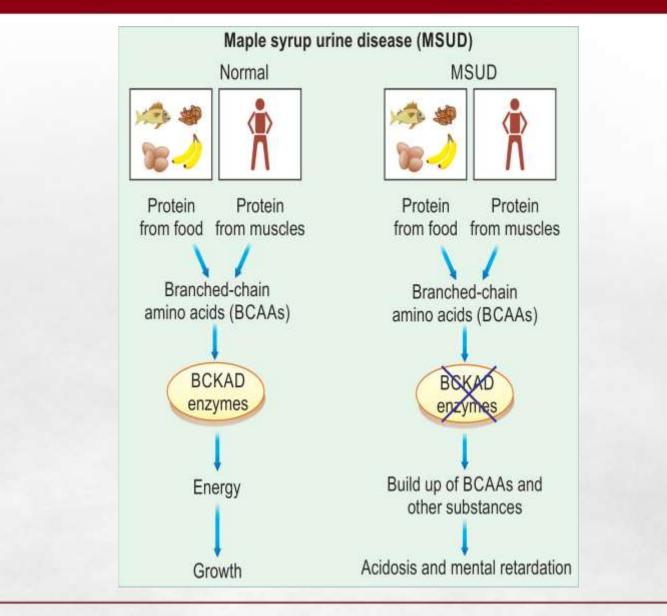
Catabolism of Branched Chain Amino Acids

No.	Reaction and co- enzymes	Valine	Leucine	Isoleucine
1.	Transamination to produce branched chain α -keto acid	Alpha keto isovaleric acid	Alpha keto isocaproic acid	Alpha keto beta methyl valeric acid
2.	Oxidative decarboxylation with the help of CoA, NAD+ and branched chain alpha keto acid dehydrogenase (lacking in maple syrup urine disease)	Iso butyryl CoA	Isovaleryl CoA	Alpha methyl butyryl CoA
3.	FAD dependent dehydrogenation	Methyl acrylyl CoA	β-methyl crotonyl CoA	Tiglyl CoA

No.	Reaction	and	CO-	Valine	Leucine	Isoleucine
4.	enzymes Individual	reactions	8	+ H2O; remove CoA to form beta- hydroxy isobutyrate	+ CO2 with the help of biotin to form beta methyl glutaconyl CoA	
5.	Individual	reactions		NAD dependent dehydro-genase; to form malonyl CoA	Hydrolysis; beta hydroxy beta methyl glutaryl CoA(HMG CoA)	NAD dependent dehy- drogenation; Methyl alpha methyl acetoacetyl CoA

No	Reaction and co-	Valine	Leucine	Isoleucine		
•	enzymes					
6.	End-products	B12-	HMG CoA	Cleavage to		
		Coenzyme to	lyase to form	form acetyl		
		form succinyl	acetoacetate	CoA and		
		CoA	and acetyl	propionyl		
			CoA	CoA		
7.	Final metabolic	Glucogenic	Ketogenic	Ketogenic		
	pathway	only	only	and		
				glucogenic		

Maple Syrup Urine Disease (MSUD)


- It is also called branched chain ketonuria.
- The incidence is 1 per 1 lakh births.
- The name originates from the characteristic smell of urine (similar to burnt sugar or maple sugar) due to excretion of branched chain keto acids.
- The basic biochemical defect is **deficient decarboxylation** of branched chain keto acids (BKA).
- Clinical findings: Disease starts in the first week of life.
- It is characterized by convulsions, severe mental retardation, vomiting, acidosis, coma and death within the first year of life.
- Laboratory findings: Urine contains branched chain keto acids, valine, leucine and isoleucine.

- Rothera's test is positive, but unlike in cases of ketoacidosis, even boiled and cooled urine will give the test.
- Diagnosis depends on enzyme analysis in cells.
- Diagnosis should be done prior to 1 week after birth.
- Treatment: Giving a diet low in branched chain amino acids.
- Mild variant is called **intermittent** branched chain ketonuria.
- This will respond to high doses of thiamine.
- This is because the decarboxylation of the BKA requires thiamine.

Isovaleric Aciduria

- Here leucine catabolism is affected.
- Severe metabolic acidosis and neurological deficit are seen.
- It is often fatal in early childhood.
- The characteristic offensive odor of urine is the first sign of the abnormal excretion of this metabolite.
- The defect lies in reaction No. 3 (FAD-dependent dehydrogenation).

